Sparse Unbiased Analysis of Anatomical Variance in Longitudinal Imaging

نویسندگان

  • Brian B. Avants
  • Philip A. Cook
  • Corey McMillan
  • Murray Grossman
  • Nicholas J. Tustison
  • Yuanjie Zheng
  • James C. Gee
چکیده

We present a new algorithm for reliable, unbiased, multivariate longitudinal analysis of cortical and white matter atrophy rates with penalized statistical methods. The pipeline uses a step-wise approach to transform and personalize template information first to a single-subject template (SST) and then to the individual's time series data. The first stream of information flows from group template to the SST; the second flows from the SST to the individual time-points and provides unbiased, prior-based segmentation and measurement of cortical thickness. MRI-bias correction, consistent longitudinal segmentation, cortical parcellation and cortical thickness estimation are all based on strong use of the subject-specific priors built from initial diffeomorphic mapping between the SST and optimal group template. We evaluate our approach with both test-retest data and with application to a driving biological problem. We use test-retest data to show that this approach produces (a) zero change when the retest data contains the same image content as the test data and (b) produces normally distributed, low variance estimates of thickness change centered at zero when test-retest data is collected near in time to test data. We also show that our approach--when combined with sparse canonical correlation analysis--reveals plausible, significant, annualized decline in cortical thickness and white matter volume when contrasting frontotemporal dementia and normal aging.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sexual Dimorphism and Age-Related Variations of Corpus Callosum Using Magnetic Resonance Imaging

Introduction: Despite technological advances and numerous published investigations, sexual dimorphism of Corpus Callosum (CC) remains a matter of ongoing controversy. In the present study on neurologically healthy Iranian adults, we investigated the possible gender- and age-related variations in anthropometric callosal measurements.  Methods: Our sample comprised 35 male and 35 female sub...

متن کامل

A novel framework for longitudinal atlas construction with groupwise registration of subject image sequences

Longitudinal atlas construction plays an important role in medical image analysis. Given a set of longitudinal images from different subjects, the task of longitudinal atlas construction is to build an atlas sequence which can represent the trend of anatomical changes of the population. The major challenge for longitudinal atlas construction is how to effectively incorporate both the subject-sp...

متن کامل

Eigenanatomy: sparse dimensionality reduction for multi-modal medical image analysis.

Rigorous statistical analysis of multimodal imaging datasets is challenging. Mass-univariate methods for extracting correlations between image voxels and outcome measurements are not ideal for multimodal datasets, as they do not account for interactions between the different modalities. The extremely high dimensionality of medical images necessitates dimensionality reduction, such as principal ...

متن کامل

Accelerating Magnetic Resonance Imaging through Compressed Sensing Theory in the Direction space-k

Magnetic Resonance Imaging (MRI) is a noninvasive imaging method widely used in medical diagnosis. Data in MRI are obtained line-by-line within the K-space, where there are usually a great number of such lines. For this reason, magnetic resonance imaging is slow. MRI can be accelerated through several methods such as parallel imaging and compressed sensing, where a fraction of the K-space lines...

متن کامل

Comparison of Two Quantitative Susceptibility Mapping Measurement Methods Used For Anatomical Localization of the Iron-Incorporated Deep Brain Nuclei

Introduction Quantitative susceptibility mapping (QSM) is a new contrast mechanism in magnetic resonance imaging (MRI). The images produced by the QSM enable researchers and clinicians to easily localize specific structures of the brain, such as deep brain nuclei. These nuclei are targets in many clinical applications and therefore their easy localization is a must. In this study, we aimed to i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention

دوره 13 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2010